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I. INTRODUCTION

As is known, a dispersive shock is an oscillatory structure
generated in a wave system after wave breaking of an intense
pulse under conditions where the dispersive effects are much
greater than the dissipative ones. In this sense, such shocks
are the dispersive counterparts of the usual viscous shocks
well known in the dynamics of compressive viscous fluids.
In surface water wave physics, dispersive shocks are known
as tidal bores in rivers �1�. Besides this classical observation,
dispersive shocks have also been found in some other physi-
cal systems including plasmas �2� and Bose-Einstein conden-
sates �3,4�.

In typical situations, a dispersive shock can be repre-
sented as a modulated nonlinear wave whose parameters
change little in one wavelength and one period; hence the
Whitham modulation theory �5,6� �see also �7�� can be ap-
plied to its study. If one neglects dissipation, then a disper-
sive shock is a nonstationary structure expanding with time,
so that at one edge it can be represented as a soliton train and
at the other edge as a linear wave propagating with some
group velocity into the unperturbed region. A corresponding
Whitham theory of such shocks for systems described by the
Korteweg–de Vries �KdV� equation was developed by
Gurevich and Pitaevskii in �8� and later it was extended to
other equations such as the Kaup-Boussinesq system �9,10�,
the Benjamin-Ono �BO� equation �11–13�, and the nonlinear
Schrödinger equation �14�. This approach has found applica-
tions to water wave physics �15� and the dynamics of Bose-
Einstein condensates �4,16�.

The Whitham method describes the long-time evolution
of the dispersive shock when many waves �crests� are gen-
erated. However, when the long-time evolution is consid-
ered, small dissipation effects can become of crucial impor-
tance. In particular, they can stop self-similar expansion of
the shock so that it tends to some stationary wave structure
which propagates as a whole with constant velocity. Corre-
spondingly, the Whitham equations should be modified to

include the dissipation effects. This was done for the first
time for the KdV-Burgers equation in �17,18� by a direct
method which did not apply the inverse scattering transform
method to the KdV equation. A more general approach based
on the complete integrability of unperturbed wave equations
was developed in �19� and applied to the theory of bores
described by the Kaup-Boussinesq-Burgers equation �20�
and the KdV equation with Chezy friction and a bottom with
a slope �21�.

The method of Ref. �19� can be applied in principle to any
wave equation that is completely integrable in the framework
of the Ablowitz-Kaup-Newell-Segur method �22� and any
perturbation depending on the wave variables and their space
derivatives. However, the important BO equation describing
internal waves in stratified deep water includes a nonlocal
dispersion term and therefore it cannot be considered by the
method of �19�. Although the Whitham theory for the BO
equation was discussed in �11–13,23�, its generalization to
take into account small dispersion effects has not been de-
veloped yet. The aim of this paper is to develop the Whitham
theory for the Benjamin-Ono-Burgers �BOB� equation

ut + uux + Huxx = �uxx, �1�

where

Hu�x� =
1

�
P� u�y�

y − x
dy �2�

is the Hilbert transform and the term in the right-hand side of
�1� describes small friction with the viscosity parameter �. In
the next section we shall derive the Whitham equations
which govern the slow evolution of a nonlinear periodic
wave due to its modulation and small friction and in Sec. III
we shall apply this theory to a stationary bore �dispersive
shock�.

II. WHITHAM THEORY FOR THE BENJAMIN-ONO-
BURGERS EQUATION

The unperturbed BO equation has the periodic solution

u�x,t� =
4k2

�A2 + 4k2 − A cos �
+ �, � = kx − �t , �3�

which depends on three constant parameters—the wave
number k, the amplitude of oscillations, A= �umax−umin� /2,
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and �. This solution describes a nonlinear wave propagating
with constant velocity

V =
�

k
=

1

2
�A2 + 4k2 + � . �4�

In a modulated wave these three parameters become slow
functions of the space and time coordinates and their evolu-
tion is governed by the Whitham equations, which were ob-
tained in �23� for general multiphase solutions of the unper-
turbed BO equation by a method based on the complete
integrability of the BO equation, and in �11,12� for the sim-
plest one-phase solution �3� by a direct Whitham method
based on use of the Hamilton principle

�� dt� dx L�	,	x,	t� = 0 �5�

with the Lagrangian

L =
1

2
	t	x +

1

6
	x

3 +
1

2
	xH	xx, u = 	x. �6�

In this method the periodic solution is represented in the
form

	 = 
 + ���� , �7�

where


 = �x − �t, � = kx − �t , �8�

so that

� = 
x, � = − 
t, k = �x, � = − �t; �9�

hence u=u�� ,�x ,�t ,
x�, L=L�� ,�x ,�t ,
x ,
t�, and the aver-
aging is taken over fast oscillations according to the rule

L̄ =
1

2�
�

0

2�

L d� , �10�

leading to an averaged Lagrangian that depends on the de-
rivatives �x ,�t ,
x ,
t. The Euler-Lagrange equations for the
corresponding averaged Hamilton principle

�� dt� dx L̄��x,�t,
x,
t� = 0 �11�

yield, taking account of �9�, the Whitham equations in the
form

�

�t

�L̄

��
−

�

�x

�L̄

��
= 0,

�

�t

�L̄

��
−

�

�x

�L̄

�k
= 0, �12�

which should be complemented by the consistency condi-
tions

�x + �t = 0, kt + �x = 0. �13�

After calculation of the integral �10� they reduce to a system
of equations for the parameters �, k, V=� /k �see �11,12��.

Now our task is to generalize this procedure to the per-
turbed BO equation �1�. Instead of using the Lagrangian for-
mulation with an additional field �see, for instance, Ref. �24��

we prefer to introduce another approach which does not re-
quire introduction of new auxiliary fields. We propose to use
directly the Hamilton principle in its infinitesimal form by
noticing that Eq. �1� can be written symbolically as

� dt� dx��L + �	xxx�	� = 0, �14�

where �L is a variation of the Lagrangian �6�. Now we can
transform �14� in the following way. First, we integrate the
“dissipative” term by parts and use u=	x:

� dt� dx��L − �ux�u� = 0. �15�

Second, we average the dissipative term as follows:

� dx�ux�u� =� dx�ux�u��� + u�x
��x + u�t

��t + u
x
�
x��

=� dx	
uxu� −
�

�x
�uxu�x

� −
�

�t
�uxu�t

����

−
�

�x
�uxu
x

��
� .

In the Whitham approximation with fast � variable we have
� /�x
�x� /��, � /�t
�t� /��, where within the averaging
interval the parameters �x and �t can be considered constant,
the terms with �-derivatives become equal to zero after av-
eraging, and, hence, we arrive at the expression

� dt� dx�ux�u� =� dt� dx�uxu���� =� dt� dx k�u�
2��� .

�16�

Transformation of the term with the Lagrangian in �15� can
be performed in a similar way and as a result we obtain the
Whitham equations in the form

�

�t

�L̄

��
−

�

�x

�L̄

��
= 0,

�

�t

�L̄

��
−

�

�x

�L̄

�k
= �k�u�

2� , �17�

which generalize Eqs. �12� to the BOB equation �1�.
A simple calculation of the averaged values gives �11,12�

L̄ =
1

3
k3 − k��2

k2 −
��

k
+ �� +

1

6
�3 −

1

2
�� , �18�

�k�u�
2� = 2��V − ����V − ��2 − k2� . �19�

Their substitution into �17� and use of �13� permit one to
express � as �=�2 /2 and to transform the equations for the
other parameters to the forms

�t + ��x = 0,

kt + �Vk�x = 0,

Vt + VVx + kkx = − ��V − ����V − ��2 − k2� . �20�

These are the Whitham equations for the physical parameters
�, k, V. We note that these equations can also be derived by
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means of averaging of modified conservation laws. For the
BO equation without dissipation, such a derivation of the
Whitham equations was given in �12�.

Although Eqs. �20� are simple enough for further investi-
gations, they can be transformed to the theoretically more
attractive diagonal form by introduction of Riemann invari-
ants a, b, c according to the definitions

� = 2c, k = b − a, V = b + a �c 
 a 
 b� , �21�

so that we get the system

at + 2aax = − 2��a − c��b − c��a + b − 2c� ,

bt + 2bbx = − 2��a − c��b − c��a + b − 2c� ,

ct + 2ccx = 0. �22�

In terms of Riemann invariants the periodic solution �3�
takes the form

u�x,t� =
2�b − a�2

a + b − 2c − 2��a − c��b − c�cos �
+ 2c , �23�

where

� = �b − a�x − �b2 − a2�t . �24�

The parameters a ,b ,c must satisfy the condition 2c
a+b to
keep the solution nonsingular. The amplitude of oscillations
is expressed as

A = 4��a − c��b − c� . �25�

When for some concrete problem the solution of Eqs. �22�
is found and the functions a=a�x , t�, b=b�x , t�, c=c�x , t� are
known, their substitution into �23� yields the modulated non-
linear wave for the problem under consideration. The mean
value of u in this oscillatory region is equal to

ū = 2k + � = 2�b + c − a� . �26�

In the next section we shall consider an example of such a
problem.

III. DISPERSIVE SHOCK (BORE) IN INTERNAL WAVES
IN A DEEP FLUID

As was mentioned in the Introduction, the dispersive
shock is an oscillatory region joining two regions with dif-
ferent values of the wave amplitude u± which arise after
wave breaking. In the simplest case of the Gurevich-
Pitaevskii problem one can consider u± as two constants:
u→u± as x→ ±�, respectively, and without loss of general-
ity we can take u+=0 and denote u−=u0=const. Thus, we
have to find the solution of the Whitham equations that cor-
responds to a modulated nonlinear wave satisfying the
boundary conditions

u → 	u0, x → − � ,

0, x → + � .
�27�

Naturally, the initial profile of the wave u=u�x ,0� must also
satisfy this condition, and an easy calculation shows that

after wave breaking the waves are generated with wave-
length L�1/u0.

Now, we can distinguish two typical stages of evolution
of the wave: �1� the initial stage for t�1/ ��u0

2�, when we
have �ut � �� �uxx�, so that one can neglect a viscous term in
�1�; and �2� the asymptotic stage of large time t�1/ ��u0

2�,
when the solution tends to the stationary solution determined
by interplay of the dispersion and dissipation effects. Ex-
amples of the first stage have already been studied in �12,13�.
The simplest case of a steplike initial condition has been
discussed in �11�, and we shall reproduce some results here
in Riemann invariant form and with additional remarks for
convenience of future comparison with the second stage of
asymptotically large time.

Thus, we suppose that at the initial moment t=0 the re-
gion of transition from u=u0 to u=0 is very narrow �i.e.,
much less than L�1/u0� so that the initial profile can be
approximated by a steplike function,

u�x,0� = 	u0, x 
 0,

0, x � 0.
�28�

As was noticed above, at the initial stage we can neglect the
dissipation effects, so that the dispersive shock arising is
governed by the equations

at + 2aax = 0, bt + 2bbx = 0, ct + 2ccx = 0. �29�

After averaging over the wavelength the initial-value prob-
lem for the Riemann invariants does not contain any param-
eters with dimension of length. Hence, the Riemann invari-
ants can depend on the self-similar variable �=x / t only so
that the solution of Eqs. �29� has the form �see Fig. 1�

a = x/2t, 0 
 x 
 x+,

b = u0/2, x 
 x+,

c = 0, x � x− = 0, �30�

where

x+ = u0t . �31�

Substitution of this solution into �23� gives the expression
for u in the oscillatory region,

FIG. 1. Plots of the Riemann invariants at t=100 as functions of
x in the case of decay of the steplike initial distribution without
friction.
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u�x,t� =
�u0t − x�2

t�u0t + x − 2�u0tx cos ��
, �32�

where

� = �2�u0t − x�x − �u0
2t2 − x2��/�4t� . �33�

The corresponding plot of the dispersive shock profile at
fixed t is shown in Fig. 2. It agrees with the direct numerical
solution of the BO equation with a steplike initial condition
�28� which was presented in Ref. �25�. At the leading front
we can see a soliton with amplitude

us = 4V = 4u0, �34�

which moves to the right with velocity V=u0. The trailing
edge is located at x=0 and corresponds to a linear wave with
vanishing amplitude and zero value of the group velocity.
Indeed, linearization of the BO equation with respect to the
small amplitude A in u
U0+A cos�kx−�t� leads to the dis-
persion relation

� = u0k − k2. �35�

According to �21� we have k=b=u0 /2 at x=0 and hence

�d�

dk
�

k=u0/2
= 0 at x = 0. �36�

The number of waves in the oscillatory region is equal to

N =
1

2�
�

0

u0t

k dx =
u0

2t

8�
. �37�

The self-similar expansion of the oscillatory region holds
as long as the viscosity effects can be neglected. However,
these effects come into play at t�1/ ��u0

2� and at t→� the
shock profile tends to the stationary structure propagating
with constant velocity. To find this structure, we look for the
stationary solution of the Whitham equations �22� so that the
Riemann invariants are functions of �=x−Vt only, where
V=a+b=const. We assume that �=0 corresponds to the
leading soliton front of the shock, where k=b−a=0 and
ū=2�b+c−a�=0, which give at once that c=0 and
a=b=V /2 at �=0. Then the last equation �22� gives c=0
identically and the remaining equations �22� reduce to a
single equation

�2b − V�b� = − 2�Vb�V − b� , �38�

which should be solved with the initial condition

�b��=0 =
V

2
. �39�

An elementary calculation taking account of the
inequality b�a=V−b, i.e., b�V /2, gives at once
b= �V /2��1+�1−exp�2�V���. Finally, at �→−� we must
have a=0, b=V, ū=u0=2b=2V, that is, V=u0 /2, and we
arrive at the solution

a =
u0

4
�1 − �1 − exp�2�V��� ,

b =
u0

4
�1 + �1 − exp�2�V���, c = 0, �40�

where �=x− �u0 /2�t. Plots of the Riemann invariants are
shown in Fig. 3; they should be compared with Fig. 1. Sub-
stitution of Eq. �40� into Eq. �23� yields the profile of the
shock,

u�x,t� =
u0�1 − exp��u0���

1 − exp��u0�/2�cos �
�41�

where

FIG. 2. Profile of the bore at t=100 corresponding to self-
similar decay of the steplike initial distribution without friction.

FIG. 3. Plots of the Riemann invariants as functions of � in the
case of the stationary bore solution with friction ��=0.05�.

FIG. 4. Profile of the stationary bore described by the Bebjamin-
Ono-Burgers equation with friction coefficient �=0.05. Dashed line
corresponds to the constant value of u at x→−�.
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� =
u0

2
�1 − exp��u0���, � = x −

u0

2
t . �42�

The corresponding plot is shown in Fig. 4. Again at the lead-
ing front we can see a soliton, but now it has the amplitude

us = 2u0 �43�

and propagates with velocity V=u0 /2. Thus, the friction ef-
fects lead to decrease of the amplitude and velocity of the
soliton compared with the nonstationary stage. However, it is
important to notice that, in contrast to an isolated soliton, the
profile of the bore becomes asymptotically stationary. In this
stationary solution the trailing edge is located at x=−�,
which corresponds to the position of the initial discontinuity
in this reference frame: x
−�u0 /2�t at t→�. Hence, even
when the leading front has almost reached its stationary pro-
file, the rear edge of the shock wave still remains a nonsta-
tionary wave packet located at the position of the initial step-
like discontinuity.

IV. CONCLUSION

In this paper, we have discussed the structure of the dis-
persive shock described by the BO equation taking account
of small friction effects. It is shown that there exists a sta-
tionary profile so that the nonstationary oscillating structure
supported by a jump of the wave amplitude at two spatial
infinities tends asymptotically to this stationary profile.

The Whitham method applied to this problem is very
simple in the case of the BOB equation, and the correspond-
ing equations can be solved in elementary and explicit form.

ACKNOWLEDGMENTS

The work of V.S.S. was supported by a CNPq grant.
A.M.K. thanks FAPESP for support of his stay at IFT-
UNESP, Brazil. V.S.S. thanks the IFT-UNESP for warm hos-
pitality and financial support during his visit.

�1� B. Benjamin and M. J. Lighthill, Proc. R. Soc. London, Ser. A
224, 448460 �1954�.

�2� M. Khan, S. Ghosh, S. Sarkar, and M. R. Gupta, Phys. Scr., T
116, 5356 �2005�.

�3� T. P. Simula, P. Engels, I. Coddington, V. Schweikhard, E. A.
Cornell, and R. J. Ballagh, Phys. Rev. Lett. 94, 080404 �2005�.

�4� M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P.
Engels, and V. Schweikhard, Phys. Rev. A 74, 023623 �2006�.

�5� G. B. Whitham, Proc. R. Soc. London, Ser. A 283, 238 �1965�.
�6� G. B. Whitham, Linear and Nonlinear Waves �Wiley-

Interscience, New York, 1974�.
�7� A. M. Kamchatnov, Nonlinear Periodic Waves and Their

Modulations—An Introductory Course �World Scientific, Sin-
gapore, 2000�.

�8� A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 65,
590 �1973� �Sov. Phys. JETP 38, 291 �1973��.

�9� G. A. El, R. H. J. Grimshaw, and M. V. Pavlov, Stud. Appl.
Math. 106, 157 �2001�.

�10� G. A. El, R. H. J. Grimshaw, and A. M. Kamchatnov, Stud.
Appl. Math. 114, 395 �2005�.

�11� Y. Matsuno, J. Phys. Soc. Jpn. 67, 1814 �1998�.
�12� Y. Matsuno, Phys. Rev. E 58, 7934 �1998�.

�13� M. C. Jorge, A. A. Minzoni, and N. F. Smyth, Physica D 132,
1 �1999�.

�14� A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, Phys.
Rev. E 66, 036609 �2002�.

�15� J. P. Apel, J. Phys. Oceanogr. 33, 2247 �2003�.
�16� A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel, Phys.

Rev. A 69, 063605 �2004�.
�17� A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 66, 490

�1987�.
�18� V. V. Avilov, I. M. Krichever, and S. P. Novikov, Sov. Phys.

Dokl. 32, 564 �1987�.
�19� A. M. Kamchatnov, Physica D 188, 247261 �2004�.
�20� G. A. El, R. H. J. Grimshaw, and A. M. Kamchatnov, Chaos

15, 037102 �2005�.
�21� G. A. El, R. H.J. Grimshaw, and A. M. Kamchatnov �unpub-

lished�.
�22� M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud.

Appl. Math. 53, 249 �1974�.
�23� S. Yu. Dobrokhotov, and I. M. Krichever, Math. Notes 49, 583

�1991�.
�24� D. J. Kaup and B. A. Malomed, Physica D 87, 155 �1995�.
�25� D. R. Christie, J. Atmos. Sci. 46, 1462 �1989�.

WHITHAM METHOD FOR THE BENJAMIN-ONO-BURGERS… PHYSICAL REVIEW E 75, 016307 �2007�

016307-5


